Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Di-*u*-chlorido-bis({2-[(triisopropylsilyl)aminomethyl]pyridine- $\kappa N$ {lithium(I))

## Christian Koch, Helmar Görls and Matthias Westerhausen\*

Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, D-07743 lena, Germany Correspondence e-mail: m.we@uni-jena.de

Received 20 September 2007; accepted 21 September 2007

Key indicators: single-crystal X-ray study: T = 183 K: mean  $\sigma$ (C–C) = 0.007 Å: R factor = 0.076; wR factor = 0.215; data-to-parameter ratio = 19.3.

The title compound,  $[Li_2Cl_2(C_{15}H_{38}N_2Si)_4]$ , is a centrosymmetric dimer. Each Li atom is coordinated in a distorted tetrahedral manner by two pyridyl rings and two chloride anions. Only one of the two symmetry-independent NH groups is involved in hydrogen bonding.

### **Related literature**

For related literature, see: Baker et al. (2005); Bickley et al. (2004); Buttery et al. (2006); Chen et al. (2002); DeAngelis et al. (1992); Engelhardt et al. (1988, 1990); Hahn & Rupprecht (1991); Ho et al. (1993); Pratt et al. (2006); Solari et al. (1992); Tayebani et al. (1998); Westerhausen et al. (2002, 2004, 2006).



#### **Experimental**

#### Crystal data

[Li<sub>2</sub>Cl<sub>2</sub>(C<sub>15</sub>H<sub>38</sub>N<sub>2</sub>Si)<sub>4</sub>]  $M_r = 1142.72$ Triclinic,  $P\overline{1}$ a = 9.6312 (19) Å b = 13.806 (3) Å c = 14.802 (3) Å  $\alpha = 113.036 (10)^{\circ}$  $\beta = 95.653 \ (17)^{\circ}$ 

 $\gamma = 102.388 \ (12)^{\circ}$ V = 1732.2 (6) Å<sup>3</sup> Z = 1Mo  $K\alpha$  radiation  $\mu = 0.20 \text{ mm}^{-1}$ T = 183 (2) K  $0.05 \times 0.05 \times 0.05 \mbox{ mm}$ 

#### Data collection

| Nonius KappaCCD diffractometer     | 6997 independent reflections                                                                                               |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Absorption correction: none        | 4247 reflections with $I > 2\sigma(I)$                                                                                     |
| 10497 measured reflections         | $R_{\text{int}} = 0.039$                                                                                                   |
| Refinement                         |                                                                                                                            |
| $R[F^2 > 2\sigma(F^2)] = 0.076$    | H atoms treated by a mixture of                                                                                            |
| $wR(F^2) = 0.215$                  | independent and constrained                                                                                                |
| S = 1.05                           | refinement                                                                                                                 |
| 6997 reflections<br>363 parameters | $\Delta \rho_{\text{max}} = 0.52 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.36 \text{ e } \text{\AA}^{-3}$ |

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$        | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-------------------------|----------|-------------------------|--------------|---------------------------|
| $N2A - H1NA \cdots Cl1$ | 0.81 (5) | 2.73 (6)                | 3.430 (5)    | 146 (4)                   |

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Siemens, 1990); software used to prepare material for publication: SHELXL97.

The authors thank the Deutsche Forschungsgemeinschaft (DFG, Bonn-Bad Godesberg, Germany) and the Fonds der Chemischen Industrie (Frankfurt/Main, Germany) for generous financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2518).

#### References

- Baker, R. J., Jones, C., Mills, D. P., Murphey, D. M., Hey-Hawkins, E. & Wolf, R. (2005). Dalton Trans. pp. 64-72.
- Bickley, J. F., Copsey, M. C., Jeffery, J. C., Leedham, A. P., Russell, C. A., Stalke, D., Steiner, A., Stey, T. & Zacchini, S. (2004). Dalton Trans. pp. 989-995
- Buttery, J. H. N., Effendy, H. P., Mutrofin, S., Plackett, N. C., Skelton, B. W., Somers, N., Whitaker, C. R. & White, A. H. (2006). Z. Anorg. Allg. Chem. 632, 1839-1850.
- Chen, X., Du, C., Guo, J.-P., Wei, X.-H. & Liu, D.-S. (2002). J. Organomet. Chem. 655, 89-95.
- DeAngelis, S., Solari, E., Gallo, E., Floriani, C., Chiesi-Willa, A. & Rizzoli, C. (1992). Inorg. Chem. 31, 2520-2527.
- Engelhardt, L. M., Jacobsen, G. E., Junk, P. C., Raston, C. L. & White, A. H. (1990). J. Chem. Soc. Chem. Commun. pp. 89-91.
- Engelhardt, L. M. G. E., Junk, P. C., Raston, C. L., Skelton, B. W. & White, A. H. (1988). J. Chem. Soc. Dalton Trans. pp. 1011-1020.
- Hahn, F. E. & Rupprecht, S. (1991). Z. Naturforsch. 46b, 143-146.
- Ho, J., Hou, Z., Drake, R. J. & Stephan, D. W. (1993). Organometallics, 12, 3145-3157
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Pratt, L. M., Merry, S., Nguyen, S. C., Quan, P. & Thanh, P. T. (2006). Tetrahedron, 62, 10821-10828.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1990). XP in SHELXTL. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
- Solari, E., DeAngelis, S., Floriani, C., Chiesi-Willa, A. & Rizzoli, C. (1992). Inorg. Chem. 31, 96-101.

Tayebani, M., Gambarotta, S. & Yap, G. (1998). Organometallics, 17, 3639-3641.

Westerhausen, M., Bollwein, T., Makropoulos, N., Schneiderbauer, S., Suter, M., Nöth, H., Mayer, P., Piotrowski, H., Polborn, K. & Pfitzner, A. (2002). *Eur. J. Inorg. Chem.* pp. 389–404. Westerhausen, M., Kneifel, A. N. & Makropoulos, N. (2004). Inorg. Chem. Commun. 7, 990–993.

Westerhausen, M., Kneifel, A. N. & Mayer, P. (2006). Z. Anorg. Allg. Chem. 632, 634–638.

Acta Cryst. (2007). E63, m2633-m2634 [doi:10.1107/S1600536807046442]

## Di-µ-chlorido-bis({2-[(triisopropylsilyl)aminomethyl]pyridine-ĸN}lithium(I))

## C. Koch, H. Görls and M. Westerhausen

#### Comment

In the past, metallated (2-pyridylmethyl)(trialkysilyl)amines were used for C-C coupling reactions in order to prepare tetradentate ligands. The zincation of (2-pyridylmethyl)(triisopropylsilyl)amine (A) gives dimeric methylzinc-(2pyridylmethyl)(triisopropylsilyl)-amide. Further addition of dimethylzinc to a toluene solution to A at raised temperatures yields the C-C coupling product bis(methylzinc)[1,2-dipyridyl-1,2-bis(triisopropylsilylamido)ethane]. The synthesis of compound A is described but no structural data have been published (Westerhausen et al. 2002). An excess of LiCl led to the formation of single crystals of is[lithiumchloride-bis{( $\kappa N2$ -pyridylmethyl)(triisopropylsilyl)amine}]((A)<sub>2</sub>LiCl]<sub>2</sub>, 1) at ambient temperature. In 1, the (2-pyridylmethyl)(triisopropylsily)amines bond via the pyridyl-nitrogen atoms to the Li atoms forming a centosymmetric four-membered LiClLi<sup>i</sup>Cl<sup>i</sup> ring [symmetry code:(i) 1 - x, 1 - y, 2 - z]. The amine reacts as a monodentate ligand. The lithium atoms in the central fragment Li<sub>2</sub>Cl<sub>2</sub> have a transannular Li…Li<sup>i</sup> distance of 292.5 (15) pm. The lithium atoms are distorted tetrahedral coordinated by two chloride atoms and two nitrogen atoms with LiCl bond lengths of 234.6 (7) pm and 235.5 (7) pm. These data are similar to those in [(THF)<sub>2</sub>LiCl]<sub>2</sub> (Hahn & Rupprecht 1991, Hahn & Rupprecht 1991, Baker et al. 2005, Bickley et al. 2004, DeAngelis et al. 1992, Ho et al. 1993, Pratt et al. 2006, Solari et al. 1992, Tayebani et al. 1998). Due to this fact the bulkiness of the amines A is compareable of the THF molecules. The average Li···N distance of 210.0 pm in bis[lithiumchloride-bis{( $\kappa N2$ -pyridylmethyl) (di-tertbutylsilylamine [] (2, Westerhausen et al. 2004) is very similar to the values of 1 (209.8 (8) pm and 209.0 (8) pm) (Buttery et al. 2006; Chen et al. 2002; Engelhardt et al. 1988). In contrast to these LiCl adducts 1 and 2, dimeric LiI forms a 1/1 complex of bis[lithiumiodide-bis(2-pyridylmethyl)(tert-butyldimethylsilyl)amine] (Westerhausen et al. 2006). The lithiation of (2-pyridylmethyl)(tert-butyldimethylsilyl)amine in THF yields semi(tetrahydrofuran)lithium-(2-pyridylmethyl) (tert-butyldimethylsilyl)amide and the reaction with an other equivalent of methyllithium yields octameric dilithium (2pyridylmethylido)(tert-butyldimethylsilyl)amide (Westerhausen et al. 2004). Reactions of halogenboranes with silylamines vield aminoboranes via elimination of chlorosilanes (Engelhardt et al., 1990).

#### **Experimental**

All manipulations were carried out in an atmosphere of argon using standard Schlenk techniques. THF and pentane were dried (Na/benzophenone) and distilled prior to use. 2-pyridylmethylamine and butyllithium were purchased form Aldrich. Tert-butyldimethylchlorosilane was purchased from Merck.<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded at[D<sub>6</sub>]benzene solution at ambient temperature on a Bruker AC 400 MHz s pectrometer and were referenced to deuterated benzene as an internal standard.

Bis[lithiumchloride-bis{( $\kappa N$ 2-pyridylmethyl)(triisopropylsilyl)amine}] was prepared according to a literature procedure (Westerhausen *et al.* 2002) and recrystallized from pentane. Reduction of the volume to 1/3 of the original volume, single crystals precipitated at ambient temperature within five days.

Physical data:

Mp: 52 °C (decomposition).

<sup>1</sup>H NMR (400 MHz, Benzene [D6])  $\delta$  = 8.48 (d, <sup>3</sup>*J*(H<sup>1</sup>,H<sup>2</sup>) = 4.4, 1H, Pyr1); 7.61 (dt, <sup>5</sup>*J*(H<sup>3</sup>,H<sup>1</sup>) = 2.0, <sup>3</sup>*J*(H<sup>3</sup>,H<sup>2/4</sup>) = 7.4, 1H, Pyr3); 7.06 (d, <sup>3</sup>*J*(H<sup>4</sup>,H<sup>3</sup>) = 7.6, 1H, Pyr4); 6.63 (t, <sup>3</sup>*J*(H<sup>1</sup>,H<sup>3</sup>) = 5.6, 1H, Pyr2); 4.15 (d, <sup>3</sup>*J*(H<sup>6</sup>,NH) = 8.0, 2H, CH<sub>2</sub>); 1.29 (s, br, 1H, NH); 1.07 (s, 21H, SiCH(CH<sub>3</sub>)<sub>2</sub>/SiCH(CH<sub>3</sub>)<sub>2</sub>).

<sup>13</sup>C NMR (100 MHz, Benzene [D6])  $\delta$  = 163.25 (Pyr5); 149.28 (Pyr1); 135.80 (Pyr3); 121.29 (Pyr2); 120.68 (Pyr4); 48.62 (<sup>2</sup>*J*, CH2); 18.49 (CH<sub>3</sub>); 13.91 (CH(CH<sub>3</sub>)<sub>2</sub>)

MS (EI, m/z [%]): 265 (M, 11), 264 ( $M^+$ , 46), 263 ( $M^+$ —H, 100), 223 (5), 222 (19), 221 ( $M^+C_3H_7$ , 70), 220 (11), 219 (10), 136 (5), 135 (29), 134 (9), 87 (5), 73 (6), 59 (10).

IR (cm<sup>-1</sup>): 3373, 3091, 3011, 2942, 2892, 2863, 2758, 2722, 1700, 1646, 1592, 1571, 1464, 1434, 1407, 1387, 1382, 1366, 1342, 1319, 1294, 1255, 1249, 1213, 1145, 1125, 1094, 1084, 1070, 1047, 1013, 994, 952, 918, 883, 841, 799, 752, 728, 680, 639, 602, 553, 502, 462, 402.

## Refinement

The hydrogen atoms bound to the amine N atoms were located in a difference Fourier synthesis and freely refined. All other hydrogen atoms were set to idealized positions and were refined with 1.2 times (1.5 for methyl groups) the isotropic displacement parameter of the corresponding carbon atom. The methyl groups were allowed to rotate but not to tip.

## Figures



Fig. 1.n a i

The molecular structure of the title compound, showing 40% prabability displacement ellipsoides and the numbering scheme for the non-carbon atoms. H atoms have been omitted for clarity.

## $Di-\mu$ -chlorido-bis({2-[(triisopropylsilyl)aminomethyl]pyridine- $\kappa N$ }lithium(I))

Crystal data [Li<sub>2</sub>Cl<sub>2</sub>(C<sub>15</sub>H<sub>38</sub>N<sub>2</sub>Si)<sub>4</sub>]  $M_r = 1142.72$ Triclinic, *P*T Hall symbol: -P 1 a = 9.6312 (19) Å b = 13.806 (3) Å c = 14.802 (3) Å

Z = 1  $F_{000} = 624$   $D_x = 1.095 \text{ Mg m}^{-3}$ Mo Ka radiation  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 10497 reflections  $\theta = 1.7-27.6^{\circ}$  $\mu = 0.20 \text{ mm}^{-1}$ 

| $\alpha = 113.036 \ (10)^{\circ}$ | T = 183 (2)  K                            |
|-----------------------------------|-------------------------------------------|
| $\beta = 95.653 \ (17)^{\circ}$   | Prism, colourless                         |
| $\gamma = 102.388 \ (12)^{\circ}$ | $0.05 \times 0.05 \times 0.05 \text{ mm}$ |

V = 1732.2 (6) Å<sup>3</sup>

Data collection

| Nonius KappaCCD<br>diffractometer        | 4247 reflections with $I > 2\sigma(I)$ |
|------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube | $R_{\rm int} = 0.039$                  |
| Monochromator: graphite                  | $\theta_{\text{max}} = 27.6^{\circ}$   |
| T = 183(2)  K                            | $\theta_{\min} = 1.7^{\circ}$          |
| $\varphi$ and $\omega$ scans             | $h = -12 \rightarrow 12$               |
| Absorption correction: none              | $k = -17 \rightarrow 15$               |
| 10497 measured reflections               | $l = -16 \rightarrow 19$               |
| 6997 independent reflections             |                                        |

## Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.076$                        | H atoms treated by a mixture of independent and constrained refinement              |
| $wR(F^2) = 0.215$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0735P)^2 + 2.7204P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| S = 1.05                                               | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 6997 reflections                                       | $\Delta \rho_{max} = 0.52 \text{ e} \text{ Å}^{-3}$                                 |
| 363 parameters                                         | $\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$                              |
| Primary atom site location: structure-invariant direct |                                                                                     |

methods Primary atom site location: structure-invariant direct Extinction correction: none

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x          | У          | Ζ          | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|------------|------------|------------|---------------------------|
| Li1 | 0.5468 (8) | 0.4002 (6) | 0.9583 (5) | 0.0482 (17)               |

| Cl1          | 0.47045 (13) | 0.47397 (9)  | 1.11048 (8) | 0.0521 (3)          |
|--------------|--------------|--------------|-------------|---------------------|
| Si1A         | 0.37243 (13) | 0.16461 (10) | 1.16902 (9) | 0.0434 (3)          |
| N1A          | 0.3840 (4)   | 0.2556 (3)   | 0.8693 (2)  | 0.0452 (8)          |
| N2A          | 0.3501 (4)   | 0.2063 (3)   | 1.0739 (3)  | 0.0478 (9)          |
| C1A          | 0.3073 (5)   | 0.2509 (4)   | 0.7861 (3)  | 0.0568 (12)         |
| H1AA         | 0.3394       | 0.3083       | 0.7663      | 0.068*              |
| C2A          | 0.1865 (5)   | 0.1689 (5)   | 0.7284 (4)  | 0.0651 (14)         |
| H2AA         | 0.1373       | 0.1687       | 0.6694      | 0.078*              |
| C3A          | 0.1368 (6)   | 0.0865 (4)   | 0.7568 (4)  | 0.0668 (14)         |
| H3AA         | 0.0521       | 0.0285       | 0.7184      | 0.080*              |
| C4A          | 0.2131 (5)   | 0.0899 (4)   | 0.8425 (4)  | 0.0591 (12)         |
| H4AA         | 0.1808       | 0.0341       | 0.8641      | 0.071*              |
| C5A          | 0.3355 (4)   | 0.1743 (3)   | 0.8965 (3)  | 0.0443 (10)         |
| C6A          | 0.4233 (5)   | 0.1793 (4)   | 0.9897 (3)  | 0.0489 (10)         |
| H6AA         | 0.4428       | 0.1075       | 0.9745      | 0.059*              |
| H6AB         | 0.5179       | 0.2350       | 1.0087      | 0.059*              |
| C7A          | 0.2504 (5)   | 0.2223 (4)   | 1.2538 (3)  | 0.0560 (12)         |
| H7AA         | 0.2918       | 0.3036       | 1.2833      | 0.067*              |
| C8A          | 0.2544 (7)   | 0.1923 (6)   | 1.3429 (4)  | 0.0862 (19)         |
| H8AA         | 0.1994       | 0.2323       | 1.3894      | 0.129*              |
| H8AB         | 0.3553       | 0.2119       | 1.3774      | 0.129*              |
| H8AC         | 0.2111       | 0.1134       | 1.3189      | 0.129*              |
| C9A          | 0.0954 (5)   | 0 2001 (5)   | 1 2028 (4)  | 0.0686 (14)         |
| Н9АА         | 0.0476       | 0.2483       | 1 2490      | 0.103*              |
| H9AB         | 0.0430       | 0.1236       | 1 1835      | 0.103*              |
| H9AC         | 0.0954       | 0.2142       | 1 1428      | 0.103*              |
| C10A         | 0.3299 (5)   | 0.0107(3)    | 1 1087 (3)  | 0.0457 (10)         |
| H10A         | 0.3907       | -0.0074      | 1.0566      | 0.0157 (10)         |
| C11A         | 0.1722 (5)   | -0.0475(4)   | 1.0525 (4)  | 0.0671 (13)         |
| H11A         | 0.1629       | -0.1248      | 1 0110      | 0.0071(13)          |
| H11R         | 0.1442       | -0.0130      | 1.0097      | 0.101*              |
| HIIC         | 0.1442       | -0.0419      | 1.0097      | 0.101               |
| C12A         | 0.1085       | -0.0382(4)   | 1.1010      | 0.101<br>0.0612(13) |
| H12A         | 0.3572       | -0.1175      | 1.1805 (4)  | 0.0012 (13)         |
| H12R         | 0.3372       | -0.0230      | 1.1430      | 0.092*              |
|              | 0.3103       | -0.0045      | 1.2329      | 0.092*              |
| C12A         | 0.4778       | -0.0043      | 1.2113      | $0.092^{\circ}$     |
|              | 0.5039 (5)   | 0.2228 (4)   | 1.2432 (3)  | 0.0482 (10)         |
|              | 0.30/1       | 0.1902       | 1.2990      | $0.038^{\circ}$     |
| U14A         | 0.0005 (5)   | 0.3464 (4)   | 1.2971 (4)  | 0.0022 (15)         |
| П14А         | 0.7083       | 0.3700       | 1.3317      | 0.093*              |
| HI4B         | 0.5452       | 0.3723       | 1.3459      | 0.093*              |
| HI4C         | 0.5930       | 0.3771       | 1.2469      | 0.093*              |
| CI5A<br>UI5A | 0.6740 (5)   | 0.1829 (4)   | 1.1828 (4)  | 0.0611 (13)         |
| HISA         | 0.7703       | 0.2100       | 1.2264      | 0.092*              |
| пізв         | 0.0/09       | 0.2105       | 1.1311      | 0.092*              |
| HISC CITE    | 0.6456       | 0.1027       | 1.1510      | 0.092*              |
| SIIB         | 0.79713 (13) | 0.28106 (10) | 0.60696 (8) | 0.0474 (3)          |
| NIB          | 0.7537 (4)   | 0.3767 (3)   | 0.9785 (2)  | 0.0433 (8)          |
| N2B          | 0.8546 (5)   | 0.3306 (4)   | 0.7349 (3)  | 0.0536 (10)         |

| C1B               | 0.8156 (5)             | 0.3954 (3) | 1.0715 (3) | 0.0479 (10) |
|-------------------|------------------------|------------|------------|-------------|
| H1BA              | 0.7613                 | 0.4149     | 1.1229     | 0.057*      |
| C2B               | 0.9527 (5)             | 0.3878 (4) | 1.0962 (3) | 0.0530 (11) |
| H2BA              | 0.9916                 | 0.4010     | 1.1628     | 0.064*      |
| C3B               | 1.0328 (5)             | 0.3606 (4) | 1.0225 (4) | 0.0564 (12) |
| H3BA              | 1.1284                 | 0.3554     | 1.0373     | 0.068*      |
| C4B               | 0.9709 (5)             | 0.3411 (4) | 0.9262 (3) | 0.0508 (11) |
| H4BA              | 1.0241                 | 0.3220     | 0.8742     | 0.061*      |
| C5B               | 0.8324 (4)             | 0.3493 (3) | 0.9062 (3) | 0.0434 (9)  |
| C6B               | 0.7567 (5)             | 0.3295 (4) | 0.8040 (3) | 0.0519 (11) |
| H6BA              | 0.6824                 | 0.2577     | 0.7746     | 0.062*      |
| H6BB              | 0.7058                 | 0.3866     | 0.8115     | 0.062*      |
| C7B               | 0.6639 (5)             | 0.3478 (4) | 0.5710 (3) | 0.0573 (12) |
| H7BA              | 0.6485                 | 0.3220     | 0.4966     | 0.069*      |
| C8B               | 0.7227 (8)             | 0.4725 (5) | 0.6175 (5) | 0.0914 (19) |
| H8BA              | 0.6538                 | 0.5035     | 0.5924     | 0.137*      |
| H8BB              | 0.8162                 | 0.4927     | 0.5994     | 0.137*      |
| H8BC              | 0.7357                 | 0.5012     | 0.6906     | 0.137*      |
| C9B               | 0.5148 (6)             | 0.3168 (6) | 0.5962 (4) | 0.0822 (18) |
| H9BA              | 0.4484                 | 0.3487     | 0.5701     | 0.123*      |
| H9BB              | 0.5248                 | 0.3448     | 0.6691     | 0.123*      |
| H9BC              | 0.4761                 | 0.2368     | 0.5656     | 0.123*      |
| C10B              | 0.9672 (5)             | 0.3055 (4) | 0.5550 (3) | 0.0609 (13) |
| H10B              | 0.9979                 | 0.2366     | 0.5362     | 0.073*      |
| C11B              | 1.0943 (6)             | 0.3945 (5) | 0.6265 (4) | 0.0847 (18) |
| H11D              | 1.1781                 | 0.3963     | 0.5941     | 0.127*      |
| H11E              | 1.1171                 | 0.3810     | 0.6857     | 0.127*      |
| H11F              | 1.0714                 | 0.4650     | 0.6468     | 0.127*      |
| C12B              | 0.9371 (6)             | 0.3185 (5) | 0.4578 (4) | 0.0725 (15) |
| H12D              | 1.0268                 | 0.3275     | 0.4322     | 0.109*      |
| H12E              | 0.9015                 | 0.3831     | 0.4707     | 0.109*      |
| H12F              | 0.8635                 | 0.2532     | 0.4080     | 0.109*      |
| C13B              | 0.7081 (5)             | 0.1308 (4) | 0.5560 (3) | 0.0580 (12) |
| H13B              | 0.6231                 | 0.1229     | 0.5888     | 0.070*      |
| C14B              | 0.8030 (7)             | 0.0662 (5) | 0.5822 (5) | 0.0814 (17) |
| H14D              | 0.7452                 | -0.0095    | 0.5610     | 0.122*      |
| H14E              | 0.8401                 | 0.1000     | 0.6547     | 0.122*      |
| H14F              | 0.8846                 | 0.0667     | 0.5475     | 0.122*      |
| C15B              | 0.6462 (7)             | 0.0775 (4) | 0.4429 (4) | 0.0735 (15) |
| H15D              | 0.5995                 | -0.0006    | 0.4211     | 0.110*      |
| H15E              | 0.7250                 | 0.0862     | 0.4071     | 0.110*      |
| H15F              | 0.5745                 | 0.1129     | 0.4282     | 0.110*      |
| H1NB              | 0.925 (6)              | 0.391 (4)  | 0.764 (4)  | 0.067 (16)* |
| H1NA              | 0.347 (4)              | 0.269 (4)  | 1.095 (3)  | 0.038 (12)* |
|                   |                        |            |            |             |
| Atomic displaceme | ent parameters $(Å^2)$ |            |            |             |
| r                 | 1                      |            |            |             |

| $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
|----------|----------|----------|----------|----------|----------|
|          |          |          |          |          |          |

| Li1                  | 0.048 (4)                  | 0.057 (5)  | 0.046 (4)   | 0.013 (3)   | 0.010 (3)   | 0.028 (4)   |
|----------------------|----------------------------|------------|-------------|-------------|-------------|-------------|
| Cl1                  | 0.0677 (7)                 | 0.0551 (7) | 0.0490 (6)  | 0.0241 (5)  | 0.0230 (5)  | 0.0317 (5)  |
| Si1A                 | 0.0457 (6)                 | 0.0484 (7) | 0.0429 (6)  | 0.0169 (5)  | 0.0108 (5)  | 0.0240 (5)  |
| N1A                  | 0.0460 (19)                | 0.053 (2)  | 0.0428 (19) | 0.0142 (16) | 0.0096 (16) | 0.0265 (17) |
| N2A                  | 0.057 (2)                  | 0.050 (2)  | 0.048 (2)   | 0.0246 (19) | 0.0137 (18) | 0.0262 (19) |
| C1A                  | 0.059 (3)                  | 0.070 (3)  | 0.049 (3)   | 0.010 (2)   | 0.006 (2)   | 0.038 (2)   |
| C2A                  | 0.059 (3)                  | 0.088 (4)  | 0.051 (3)   | 0.011 (3)   | 0.004 (2)   | 0.039 (3)   |
| C3A                  | 0.058 (3)                  | 0.064 (3)  | 0.066 (3)   | -0.001 (2)  | -0.001 (3)  | 0.026 (3)   |
| C4A                  | 0.055 (3)                  | 0.061 (3)  | 0.066 (3)   | 0.009 (2)   | 0.006 (2)   | 0.037 (3)   |
| C5A                  | 0.043 (2)                  | 0.051 (3)  | 0.049 (2)   | 0.019 (2)   | 0.014 (2)   | 0.026 (2)   |
| C6A                  | 0.048 (2)                  | 0.061 (3)  | 0.050 (2)   | 0.017 (2)   | 0.013 (2)   | 0.035 (2)   |
| C7A                  | 0.058 (3)                  | 0.065 (3)  | 0.051 (3)   | 0.027 (2)   | 0.013 (2)   | 0.025 (2)   |
| C8A                  | 0.084 (4)                  | 0.155 (6)  | 0.055 (3)   | 0.069 (4)   | 0.036 (3)   | 0.058 (4)   |
| C9A                  | 0.058 (3)                  | 0.102 (4)  | 0.060 (3)   | 0.038 (3)   | 0.019 (3)   | 0.038 (3)   |
| C10A                 | 0.050 (2)                  | 0.051 (3)  | 0.043 (2)   | 0.016 (2)   | 0.015 (2)   | 0.025 (2)   |
| C11A                 | 0.061 (3)                  | 0.059 (3)  | 0.070 (3)   | 0.008 (2)   | 0.009 (3)   | 0.022 (3)   |
| C12A                 | 0.083 (3)                  | 0.058 (3)  | 0.059 (3)   | 0.024 (3)   | 0.023 (3)   | 0.038 (2)   |
| C13A                 | 0.050 (2)                  | 0.056 (3)  | 0.046 (2)   | 0.015 (2)   | 0.007 (2)   | 0.030 (2)   |
| C14A                 | 0.062 (3)                  | 0.059 (3)  | 0.064 (3)   | 0.010 (2)   | -0.001 (2)  | 0.031 (3)   |
| C15A                 | 0.046 (3)                  | 0.080 (4)  | 0.064 (3)   | 0.017 (2)   | 0.005 (2)   | 0.038 (3)   |
| Si1B                 | 0.0501 (7)                 | 0.0587 (8) | 0.0385 (6)  | 0.0154 (6)  | 0.0138 (5)  | 0.0246 (6)  |
| N1B                  | 0.0459 (19)                | 0.049 (2)  | 0.0409 (18) | 0.0117 (16) | 0.0099 (16) | 0.0253 (16) |
| N2B                  | 0.057 (2)                  | 0.065 (3)  | 0.040 (2)   | 0.010 (2)   | 0.0155 (19) | 0.025 (2)   |
| C1B                  | 0.054 (3)                  | 0.052 (3)  | 0.040 (2)   | 0.010 (2)   | 0.010 (2)   | 0.023 (2)   |
| C2B                  | 0.054 (3)                  | 0.061 (3)  | 0.047 (2)   | 0.014 (2)   | 0.003 (2)   | 0.028 (2)   |
| C3B                  | 0.049 (3)                  | 0.063 (3)  | 0.062 (3)   | 0.018 (2)   | 0.004 (2)   | 0.033 (3)   |
| C4B                  | 0.051 (3)                  | 0.061 (3)  | 0.048 (2)   | 0.019 (2)   | 0.018 (2)   | 0.027 (2)   |
| C5B                  | 0.046 (2)                  | 0.046 (2)  | 0.045 (2)   | 0.0135 (19) | 0.013 (2)   | 0.024 (2)   |
| C6B                  | 0.055 (3)                  | 0.067 (3)  | 0.041 (2)   | 0.021 (2)   | 0.013 (2)   | 0.028 (2)   |
| C7B                  | 0.065 (3)                  | 0.069 (3)  | 0.047 (2)   | 0.029 (3)   | 0.018 (2)   | 0.027 (2)   |
| C8B                  | 0.127 (5)                  | 0.075 (4)  | 0.087 (4)   | 0.053 (4)   | 0.029 (4)   | 0.035 (3)   |
| C9B                  | 0.066 (3)                  | 0.136 (6)  | 0.056 (3)   | 0.046 (4)   | 0.015 (3)   | 0.043 (3)   |
| C10B                 | 0.058 (3)                  | 0.080 (4)  | 0.050 (3)   | 0.017 (3)   | 0.017 (2)   | 0.033 (3)   |
| C11B                 | 0.070 (4)                  | 0.102 (5)  | 0.078 (4)   | 0.001 (3)   | 0.030 (3)   | 0.041 (4)   |
| C12B                 | 0.078 (4)                  | 0.103 (4)  | 0.060 (3)   | 0.031 (3)   | 0.031 (3)   | 0.050 (3)   |
| C13B                 | 0.062 (3)                  | 0.063 (3)  | 0.049 (3)   | 0.011 (2)   | 0.005 (2)   | 0.028 (2)   |
| C14B                 | 0.091 (4)                  | 0.068 (4)  | 0.088 (4)   | 0.020 (3)   | -0.002(3)   | 0.041 (3)   |
| C15B                 | 0.092 (4)                  | 0.061 (3)  | 0.054 (3)   | 0.007 (3)   | -0.001 (3)  | 0.021 (3)   |
| Geometric par        | cameters $(\hat{A} \circ)$ |            |             |             |             |             |
|                      |                            |            |             | 11154       |             |             |
| LII—NIA              |                            | 2.090 (8)  | CI5A        | HISA        | 0.98        | 800         |
| LII—NIB              |                            | 2.098 (8)  | CI5A        | —НІ5В       | 0.98        | 800         |
| LII—CII              |                            | 2.346 (7)  | C15A        | -HISC       | 0.98        | 800         |
| Li1—Cl1 <sup>1</sup> |                            | 2.357 (7)  | Si1B-       | —N2B        | 1.72        | 26 (4)      |
| Li1—Li1 <sup>i</sup> |                            | 2.925 (15) | Si1B-       | C13B        | 1.80        | 69 (5)      |
| Cl1—Li1 <sup>i</sup> |                            | 2.357 (7)  | Si1B-       | —С7В        | 1.88        | 81 (5)      |
| Si1A—N2A             |                            | 1.728 (4)  | Si1B-       |             | 1.89        | 98 (5)      |

| Si1A—C7A                 | 1.871 (5) | N1B—C1B        | 1.346 (5) |
|--------------------------|-----------|----------------|-----------|
| Si1A—C10A                | 1.885 (4) | N1B—C5B        | 1.353 (5) |
| Si1A—C13A                | 1.888 (4) | N2B—C6B        | 1.460 (5) |
| N1A—C1A                  | 1.343 (5) | N2B—H1NB       | 0.87 (5)  |
| N1A—C5A                  | 1.345 (5) | C1B—C2B        | 1.372 (6) |
| N2A—C6A                  | 1.454 (5) | C1B—H1BA       | 0.9500    |
| N2A—H1NA                 | 0.81 (4)  | C2B—C3B        | 1.376 (6) |
| C1A—C2A                  | 1.359 (7) | C2B—H2BA       | 0.9500    |
| C1A—H1AA                 | 0.9500    | C3B—C4B        | 1.386 (6) |
| C2A—C3A                  | 1.371 (7) | СЗВ—НЗВА       | 0.9500    |
| C2A—H2AA                 | 0.9500    | C4B—C5B        | 1.376 (6) |
| C3A—C4A                  | 1.381 (7) | C4B—H4BA       | 0.9500    |
| СЗА—НЗАА                 | 0.9500    | C5B—C6B        | 1.506 (6) |
| C4A—C5A                  | 1.372 (6) | C6B—H6BA       | 0.9900    |
| C4A—H4AA                 | 0.9500    | C6B—H6BB       | 0.9900    |
| C5A—C6A                  | 1.514 (6) | C7B—C8B        | 1.528 (8) |
| С6А—Н6АА                 | 0.9900    | С7В—С9В        | 1.533 (7) |
| С6А—Н6АВ                 | 0.9900    | С7В—Н7ВА       | 1.0000    |
| С7А—С9А                  | 1.514 (6) | C8B—H8BA       | 0.9800    |
| C7A—C8A                  | 1.529 (6) | C8B—H8BB       | 0.9800    |
| С7А—Н7АА                 | 1.0000    | C8B—H8BC       | 0.9800    |
| C8A—H8AA                 | 0.9800    | С9В—Н9ВА       | 0.9800    |
| C8A—H8AB                 | 0.9800    | С9В—Н9ВВ       | 0.9800    |
| C8A—H8AC                 | 0.9800    | С9В—Н9ВС       | 0.9800    |
| С9А—Н9АА                 | 0.9800    | C10B—C11B      | 1.487 (7) |
| С9А—Н9АВ                 | 0.9800    | C10B—C12B      | 1.526 (6) |
| С9А—Н9АС                 | 0.9800    | C10B—H10B      | 1.0000    |
| C10A—C11A                | 1.533 (6) | C11B—H11D      | 0.9800    |
| C10A—C12A                | 1.538 (6) | C11B—H11E      | 0.9800    |
| C10A—H10A                | 1.0000    | C11B—H11F      | 0.9800    |
| C11A—H11A                | 0.9800    | C12B—H12D      | 0.9800    |
| C11A—H11B                | 0.9800    | C12B—H12E      | 0.9800    |
| C11A—H11C                | 0.9800    | C12B—H12F      | 0.9800    |
| C12A—H12A                | 0.9800    | C13B—C14B      | 1.526 (7) |
| C12A—H12B                | 0.9800    | C13B—C15B      | 1.533 (6) |
| C12A—H12C                | 0.9800    | C13B—H13B      | 1.0000    |
| C13A—C15A                | 1.525 (6) | C14B—H14D      | 0.9800    |
| C13A—C14A                | 1.534 (6) | C14B—H14E      | 0.9800    |
| C13A—H13A                | 1.0000    | C14B—H14F      | 0.9800    |
| C14A—H14A                | 0.9800    | C15B—H15D      | 0.9800    |
| C14A—H14B                | 0.9800    | C15B—H15E      | 0.9800    |
| C14A—H14C                | 0.9800    | C15B—H15F      | 0.9800    |
| N1A—Li1—N1B              | 113.6 (4) | C13A—C15A—H15B | 109.5     |
| N1A—Li1—Cl1              | 105.2 (3) | H15A—C15A—H15B | 109.5     |
| N1B—Li1—Cl1              | 112.2 (3) | C13A—C15A—H15C | 109.5     |
| N1A—Li1—Cl1 <sup>i</sup> | 106.9 (3) | H15A—C15A—H15C | 109.5     |
| N1B—Li1—C $11^{i}$       | 114.9 (3) | H15B—C15A—H15C | 109.5     |
|                          | 103 1 (3) | N2B-Si1B-C13B  | 108 2 (2) |
|                          | 100.1 (0) |                | 100.2 (2) |

| N1A—Li1—Li1 <sup>i</sup>               | 116.4 (4)   | N2B—Si1B—C7B   | 113.3 (2) |
|----------------------------------------|-------------|----------------|-----------|
| N1B—Li1—Li1 <sup>i</sup>               | 130.0 (5)   | C13B—Si1B—C7B  | 108.4 (2) |
| Cl1—Li1—Li1 <sup>i</sup>               | 51.7 (2)    | N2B—Si1B—C10B  | 106.1 (2) |
| Cl1 <sup>i</sup> —Li1—Li1 <sup>i</sup> | 51.4 (2)    | C13B—Si1B—C10B | 109.8 (2) |
| Li1—Cl1—Li1 <sup>i</sup>               | 76.9 (3)    | C7B—Si1B—C10B  | 110.9 (2) |
| N2A—Si1A—C7A                           | 105.29 (19) | C1B—N1B—C5B    | 117.5 (4) |
| N2A—Si1A—C10A                          | 107.33 (19) | C1B—N1B—Li1    | 117.5 (3) |
| C7A—Si1A—C10A                          | 115.7 (2)   | C5B—N1B—Li1    | 124.9 (3) |
| N2A—Si1A—C13A                          | 112.41 (19) | C6B—N2B—Si1B   | 123.8 (3) |
| C7A—Si1A—C13A                          | 107.6 (2)   | C6B—N2B—H1NB   | 108 (3)   |
| C10A—Si1A—C13A                         | 108.56 (19) | Si1B—N2B—H1NB  | 117 (3)   |
| C1A—N1A—C5A                            | 117.0 (4)   | N1B—C1B—C2B    | 123.6 (4) |
| C1A—N1A—Li1                            | 117.4 (3)   | N1B—C1B—H1BA   | 118.2     |
| C5A—N1A—Li1                            | 124.8 (3)   | C2B—C1B—H1BA   | 118.2     |
| C6A—N2A—Si1A                           | 124.7 (3)   | C1B—C2B—C3B    | 118.7 (4) |
| C6A—N2A—H1NA                           | 111 (3)     | C1B—C2B—H2BA   | 120.7     |
| Si1A—N2A—H1NA                          | 112 (3)     | C3B—C2B—H2BA   | 120.7     |
| N1A—C1A—C2A                            | 124.0 (4)   | C2B—C3B—C4B    | 118.6 (4) |
| N1A—C1A—H1AA                           | 118.0       | С2В—С3В—Н3ВА   | 120.7     |
| C2A—C1A—H1AA                           | 118.0       | С4В—С3В—Н3ВА   | 120.7     |
| C1A—C2A—C3A                            | 118.8 (4)   | C5B—C4B—C3B    | 119.9 (4) |
| C1A—C2A—H2AA                           | 120.6       | C5B—C4B—H4BA   | 120.0     |
| СЗА—С2А—Н2АА                           | 120.6       | C3B—C4B—H4BA   | 120.0     |
| C2A—C3A—C4A                            | 118.3 (5)   | N1B-C5B-C4B    | 121.7 (4) |
| С2А—С3А—НЗАА                           | 120.8       | N1B-C5B-C6B    | 114.7 (4) |
| С4А—С3А—НЗАА                           | 120.8       | C4B—C5B—C6B    | 123.6 (4) |
| C5A—C4A—C3A                            | 119.8 (4)   | N2B—C6B—C5B    | 113.5 (4) |
| С5А—С4А—Н4АА                           | 120.1       | N2B—C6B—H6BA   | 108.9     |
| СЗА—С4А—Н4АА                           | 120.1       | C5B—C6B—H6BA   | 108.9     |
| N1A—C5A—C4A                            | 122.0 (4)   | N2B—C6B—H6BB   | 108.9     |
| N1A—C5A—C6A                            | 116.8 (4)   | C5B—C6B—H6BB   | 108.9     |
| C4A—C5A—C6A                            | 121.2 (4)   | H6BA—C6B—H6BB  | 107.7     |
| N2A—C6A—C5A                            | 112.7 (3)   | C8B—C7B—C9B    | 109.2 (5) |
| N2A—C6A—H6AA                           | 109.1       | C8B—C7B—Si1B   | 112.1 (4) |
| С5А—С6А—Н6АА                           | 109.1       | C9B—C7B—Si1B   | 113.8 (4) |
| N2A—C6A—H6AB                           | 109.1       | C8B—C7B—H7BA   | 107.1     |
| С5А—С6А—Н6АВ                           | 109.1       | С9В—С7В—Н7ВА   | 107.1     |
| Н6АА—С6А—Н6АВ                          | 107.8       | Si1B—C7B—H7BA  | 107.1     |
| C9A—C7A—C8A                            | 110.9 (4)   | C7B—C8B—H8BA   | 109.5     |
| C9A—C7A—Si1A                           | 115.6 (3)   | C7B—C8B—H8BB   | 109.5     |
| C8A—C7A—Si1A                           | 112.8 (3)   | H8BA—C8B—H8BB  | 109.5     |
| С9А—С7А—Н7АА                           | 105.5       | C7B—C8B—H8BC   | 109.5     |
| С8А—С7А—Н7АА                           | 105.5       | H8BA—C8B—H8BC  | 109.5     |
| Si1A—C7A—H7AA                          | 105.5       | H8BB—C8B—H8BC  | 109.5     |
| С7А—С8А—Н8АА                           | 109.5       | С7В—С9В—Н9ВА   | 109.5     |
| С7А—С8А—Н8АВ                           | 109.5       | С7В—С9В—Н9ВВ   | 109.5     |
| H8AA—C8A—H8AB                          | 109.5       | Н9ВА—С9В—Н9ВВ  | 109.5     |
| С7А—С8А—Н8АС                           | 109.5       | С7В—С9В—Н9ВС   | 109.5     |

| Н8АА—С8А—Н8АС                            | 109.5     |             | Н9ВА—С9В—Н9ВС  |              | 109.5      |
|------------------------------------------|-----------|-------------|----------------|--------------|------------|
| H8AB—C8A—H8AC                            | 109.5     |             | Н9ВВ—С9В—Н9ВС  |              | 109.5      |
| С7А—С9А—Н9АА                             | 109.5     |             | C11B-C10B-C12B |              | 110.8 (4)  |
| С7А—С9А—Н9АВ                             | 109.5     |             | C11B—C10B—Si1B |              | 116.0 (3)  |
| Н9АА—С9А—Н9АВ                            | 109.5     |             | C12B—C10B—Si1B |              | 112.4 (3)  |
| С7А—С9А—Н9АС                             | 109.5     |             | C11B-C10B-H10B |              | 105.5      |
| Н9АА—С9А—Н9АС                            | 109.5     |             | C12B—C10B—H10B |              | 105.5      |
| Н9АВ—С9А—Н9АС                            | 109.5     |             | Si1B—C10B—H10B |              | 105.5      |
| C11A—C10A—C12A                           | 110.6 (4) |             | C10B—C11B—H11D |              | 109.5      |
| C11A—C10A—Si1A                           | 113.9 (3) |             | C10B—C11B—H11E |              | 109.5      |
| C12A—C10A—Si1A                           | 113.9 (3) |             | H11D—C11B—H11E |              | 109.5      |
| C11A—C10A—H10A                           | 105.9     |             | C10B—C11B—H11F |              | 109.5      |
| C12A—C10A—H10A                           | 105.9     |             | H11D—C11B—H11F |              | 109.5      |
| Si1A—C10A—H10A                           | 105.9     |             | H11E—C11B—H11F |              | 109.5      |
| C10A—C11A—H11A                           | 109.5     |             | C10B-C12B-H12D |              | 109.5      |
| C10A—C11A—H11B                           | 109.5     |             | C10B—C12B—H12E |              | 109.5      |
| H11A—C11A—H11B                           | 109.5     |             | H12D—C12B—H12E |              | 109.5      |
| C10A—C11A—H11C                           | 109.5     |             | C10B—C12B—H12F |              | 109.5      |
| H11A—C11A—H11C                           | 109.5     |             | H12D—C12B—H12F |              | 109.5      |
| H11B—C11A—H11C                           | 109.5     |             | H12E—C12B—H12F |              | 109.5      |
| C10A—C12A—H12A                           | 109.5     |             | C14B—C13B—C15B |              | 110.2 (4)  |
| C10A—C12A—H12B                           | 109.5     |             | C14B—C13B—Si1B |              | 114.1 (4)  |
| H12A—C12A—H12B                           | 109.5     |             | C15B—C13B—Si1B |              | 113.4 (3)  |
| C10A—C12A—H12C                           | 109.5     |             | C14B—C13B—H13B |              | 106.1      |
| H12A—C12A—H12C                           | 109.5     |             | C15B—C13B—H13B |              | 106.1      |
| H12B—C12A—H12C                           | 109.5     |             | Si1B—C13B—H13B |              | 106.1      |
| C15A—C13A—C14A                           | 110.7 (4) |             | C13B—C14B—H14D |              | 109.5      |
| C15A—C13A—Si1A                           | 112.3 (3) |             | C13B—C14B—H14E |              | 109.5      |
| C14A—C13A—Si1A                           | 111.6 (3) |             | H14D—C14B—H14E |              | 109.5      |
| C15A—C13A—H13A                           | 107.3     |             | C13B—C14B—H14F |              | 109.5      |
| C14A—C13A—H13A                           | 107.3     |             | H14D—C14B—H14F |              | 109.5      |
| Si1A—C13A—H13A                           | 107.3     |             | H14E—C14B—H14F |              | 109.5      |
| C13A—C14A—H14A                           | 109.5     |             | C13B—C15B—H15D |              | 109.5      |
| C13A—C14A—H14B                           | 109.5     |             | C13B—C15B—H15E |              | 109.5      |
| H14A—C14A—H14B                           | 109.5     |             | H15D—C15B—H15E |              | 109.5      |
| C13A—C14A—H14C                           | 109.5     |             | C13B—C15B—H15F |              | 109.5      |
| H14A—C14A—H14C                           | 109.5     |             | H15D—C15B—H15F |              | 109.5      |
| H14B—C14A—H14C                           | 109.5     |             | H15E—C15B—H15F |              | 109.5      |
| C13A—C15A—H15A                           | 109.5     |             |                |              |            |
| Symmetry codes: (i) $-x+1, -y+1, -z+2$ . |           |             |                |              |            |
| Hydrogen-bond geometry (Å, °)            |           |             |                |              |            |
| D—H···A                                  |           | <i>D</i> —Н | H···A          | $D \cdots A$ | D—H··· $A$ |
| N2A—H1NA…Cl1                             |           | 0.81 (5)    | 2.73 (6)       | 3.430 (5)    | 146 (4)    |



